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Use Statistics!

• But, what is relationship between statistics 
and minimum bias methods (MBM)?

• Brown’s Proceedings paper showed MBMs 
are maximum likelihood solutions to a 
statistical model for some examples
– Statistical models specify loss distributions and 

modeled values from them, and an objective 
function to solve for parameters



Overview of Talk

• Background
• Three problematic points
• Main results of paper
• So what?



Background

• Work grew out of class plan study for CNA 
Personal Lines

• Struggled with “problematic points”
• Wanted to use statistics
• Stumbled across result that all “linear” 

minimum bias methods correspond 
naturally to a statistical Generalized Linear 
Model (MGM = GLM)



Background
MBMs and GLMs have symbiotic relationship
MBM users:

– Faster computation 
method using SAS etc.

– Underlying assumptions 
expressed in explicit 
statistical model 

– Model fit and other 
statistics to interpret 
results

– Simple intro to GLMs

GLM users:
– Intuitive framework for 

GLMs
– Mathematically and 

notational more 
elementary description 
of GLMs



Problematic Point #1

• Cents or Percents?

Cents!



Problematic Point #2

• Uniqueness of parameters in a class plan
– Class plans make hard-to-see choices for base 

classes to ensure parameters are unique
• Married, 30-49, pleasure use has a factor of 1.00
• Plan has deviations for business use, single, 

different age groups 
• No factors for pleasure use, married, age 30-49 etc.



Problematic Point #2

• Uniqueness of parameters in a class plan
– Naïve statistical models have too many 

parameters so parameter values are not unique
• Predicted values are unique though parameters

are not:
xage i + yvehicle use j = (xage i + a) + (yvehicle use j - a)

• SAS GLM message
• Choice of base classes corresponds to deleting 

columns from design matrix
• It is possible to get unique parameter estimates from 

statistical models



Problematic Point #3
• Statistical notation and minimum bias 

notation
– ANOVAs and MBMs tend to use notation

rateage i, vehicle use j  = xage i + yvehicle use j

– Regression and linear models tend to use 
different notation

ratek = a + b ´ xk (k=1,…,n)
– Expressing the change of notation using 

matrices shows that an additive MBM is a 
General Linear Model (Section 4)



Main Points of Paper

• ANOVA, regression and General Linear 
Models

• General Linear Models
• Generalized Linear Models (GLMs)
• Minimum Bias Framework
• Bias, Variance Functions and Deviance
• Exponential Family Distributions
• Main Results



Main Points of Paper

Generalized
Linear Models

Minimum 
Bias Methods

Variance Function,
Bias and Deviance



ANOVA, Linear Regression, and 
General Linear Models

• ANOVA and linear regression are both 
special cases of General Linear Models

• Response = linear combination of 
continuous variables + linear combination 
of discrete variables + Normal Error term

• Weighti = a + b ´ agei + csex(i) + errori

• Discrete variables are effects
– “sex effect”, “controlling for other effects”

• Values of effects are called levels



General Linear Models

• Responsei ~ Normal(Meani, Variance)
– Mean = linear combination of continuous and 

discrete variables
– Variance = constant (up to weights)

• Objective: maximum likelihood
• Generalized Linear Models allow three 

important extensions



Generalized Linear Models

• Responsei ~ ExpDist(Meani, Variancei)
– Mean = function of linear combination of 

variables
– Variance = function of fitted mean
– ExpDist = Member of exponential family of 

distributions
• Family includes normal, gamma, inverse Gaussian, 

Poisson, and binomial distributions
– Objective: still maximum likelihood



Minimum Bias Framework

• Minimize weighted average bias over all 
other classes, for each class in turn

• Iterate until results converge
• Minimum bias is equivalent to zero bias 

when bias can be positive or negative
• MBM becomes “balanced by class”

– “And in the aggregate” comes for free



Bias, Variance Functions and 
Deviance

• Minimum bias is an objective
• How should bias be measured?
• How should individual biases be added to 

get total bias needed in objective?
• Bias generally proportional to predicted 

value minus observed value
– Can be positive or negative



Bias, Variance Functions and 
Deviance

• Variance function, V, defines a bias:
Bias = (Predicted-Observed)/V(Predicted)
– E.g. V(x)=1, or V(x)=x2

• Variance functions allow less weight to be 
given observations considered to have high 
variance

• Allows biases to be added in reasonable 
manner



Bias, Variance Functions and 
Deviance

• Deviance is a measure of overall model 
goodness of fit
– Like distance, greater than or equal to zero
– E.g. Sum of squared differences

• Can define a deviance from a bias function, 
providing key link between the two 
concepts



Exponential Family Distributions

• Normal distribution in linear models
– Form of density implies maximum likelihood = 

minimum squared differences
• Exponential family generalizes normal 

distribution with similar defining property
– Distributions correspond to deviance functions
– Maximum likelihood = minimum deviance



Main Results
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Main Results

• Can write down relationship between 
MBMs and GLMs based on variance 
function
– V(x) Distribution

V(x)=1 Normal
V(x)=x Poisson
V(x)=x2 Gamma
V(x)=x3 Inverse Gaussian
V(x)=x(1-x) Binomial



Main Results

• Minimum bias parameters equal maximum 
likelihood parameters to the corresponding 
generalized linear model

• MBM parameters can be obtained using 
iterative method, or using other methods 
related to GLM



So What?
• Algorithms available to solve GLMs are 

much quicker than iterating the MBM
– Moreover, GLMs are programmed into SAS 

and other statistical packages
– GLM solution always applies, even when 

iterative paradigm not available
• User of GLM has a statistical model which 

can be tested for reasonableness for given 
application 



So What?

• User of GLM has statistical output from 
model to assess
– Model fit and comparison of different models
– Significance of individual effects and selection 

of variables in class plan
– Significance of different levels of an effect 

• Should males be rated higher/lower than females?



So What?

• GLMs offer greatly increased flexibility 
over general linear models
– Choice of error distribution suitable for 

insurance applications (positively skewed)
– Independent choice of link function to make 

effects additive
• In General Linear Models use of log transformation 

forces lognormal errors



So What?

Stop using MBMs 
and start using 

GLMs!
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